Linear Inference Sessions¶
An overview and example of a linear inference model for performing tasks such as GWAS in HFL.
The built-in model package iai_linear_inference
trains a bundle of linear models for the target of interest against a specified list of predictors. It obtains the coefficients and variance estimates, and also calculates the p-values from the corresponding hypothesis tests. Linear inference is particularly useful for genome-wide association studies (GWAS), to identify genomic variants that are statistically associated with a risk for a disease or a particular trait.
This is a horizontal federated learning (HFL) model package.
The integrateai_HFL.ipynb
, available in the integrate.ai sample repository, demonstrates this model package using the sample data that is available for download here.
Follow the instructions in the Installing the SDK section to prepare a local test environment for this tutorial.
Overview of the iai_linear_inference package¶
There are two strategies available in the package:
LogitRegInference
- for use when the target of interest is binaryLinearRegInference
- for use when the target is continuous
# Example model_config for a binary target
model_config_logit = {
"strategy": {"name": "LogitRegInference", "params": {}},
"seed": 23, # for reproducibility
}
# Example data_config
data_config_logit = {
"target": "y",
"shared_predictors": ["x1", "x2"],
"chunked_predictors": ["x0", "x3", "x10", "x11"]
}
The data_config dictionary should include the following three fields.
target
: the target column of interestshared_predictors
: predictor columns that should be included in all linear models. For example, the confounding factors like age, gender in GWAS.chunked_predictors
: predictor columns that should be included in the linear model one at a time. For example, the gene expressions in GWAS.
Note: The columns in all the fields can be specified as either names/strings or indices/integers.
With this example data configuration, the session trains four logistic regression models with y
as the target, and x1
, x2
plus any one of x0
, x3
, x10
, x11
as predictors.
Create a linear inference training session¶
train_path1 = f's3://{base_aws_bucket}/synthetic/train_silo0.parquet'
test_path1 = f's3://{base_aws_bucket}/synthetic/test.parquet'
train_path2 = f's3://{base_aws_bucket}/synthetic/train_silo1.parquet'
test_path2 = f's3://{base_aws_bucket}/synthetic/test.parquet'
Specify the file paths.
For this example, there are two (2) training clients and the model is trained over five (5) rounds.
# Example training session
training_session_logit = client.create_fl_session(
name="Testing linear inference session",
description="I am testing linear inference session creation using a task runner through a notebook",
min_num_clients=2,
num_rounds=5,
package_name="iai_linear_inference",
model_config=model_config_logit,
data_config=data_config_logit
).start()
training_session_logit.id //prints the sesssion ID, for reference
Argument (type) |
Description |
---|---|
name (str) |
Name to set for the session |
description (str) |
Description to set for the session |
min_num_clients (int) |
Number of clients required to connect before the session can begin |
num_rounds (str) |
Number of rounds of federated model training to perform |
package_name (str) |
Name of the model package to be used in the session |
model_config (dict) |
Contains the model configuration to be used for the session |
data_config (dict) |
Contains the data configuration to be used for the session |
Start the linear inference training session¶
This example demonstrates starting a training session with two tasks (clients).
#Create a task group
task_group_context = (
SessionTaskGroup(training_session_logit)
.add_task(iai_tb_aws.hfl(train_path=train_path1, test_path=test_path1))
.add_task(iai_tb_aws.hfl(train_path=train_path2, test_path=test_path2))
.start()
)
Poll for linear inference session status¶
Use a polling function, such as the example provided, to wait for the session to complete.
for i in task_group_context.contexts.values():
print(json.dumps(i.status(), indent=4))
task_group_context.monitor_task_logs()
#Wait for result = True
task_group_context.wait(60*5, 2)
View training metrics and model details¶
Once the session is complete, you can view the training metrics and model details such as the model coefficients and p-values. In this example, since there are a bundle of models being trained, the metrics are the average values of all the models.
training_session_logit.metrics().as_dict()
# Example output
{'session_id': '3cdf4be992',
'federated_metrics': [{'loss': 0.6931747794151306},
{'loss': 0.6766608953475952},
{'loss': 0.6766080856323242},
{'loss': 0.6766077876091003},
{'loss': 0.6766077876091003}],
'client_metrics': [{'user@integrate.ai:dedbb7e9be2046e3a49b28b0131c4b97': {'test_loss': 0.6931748060977674,
'test_accuracy': 0.4995,
'test_roc_auc': 0.5,
'test_num_examples': 4000},
'user@integrate.ai:339d50e453f244ed9cb2662ab2d3bb66': {'test_loss': 0.6931748060977674,
'test_accuracy': 0.4995,
'test_roc_auc': 0.5,
'test_num_examples': 4000}},
{'user@integrate.ai:dedbb7e9be2046e3a49b28b0131c4b97': {'test_num_examples': 4000,
'test_loss': 0.6766608866775886,
'test_roc_auc': 0.5996664746664747,
'test_accuracy': 0.57625},
'user@integrate.ai:339d50e453f244ed9cb2662ab2d3bb66': {'test_num_examples': 4000,
'test_loss': 0.6766608866775886,
'test_accuracy': 0.57625,
'test_roc_auc': 0.5996664746664747}},
{'user@integrate.ai:339d50e453f244ed9cb2662ab2d3bb66': {'test_loss': 0.6766080602706078,
'test_accuracy': 0.5761875,
'test_num_examples': 4000,
...
'user@integrate.ai:339d50e453f244ed9cb2662ab2d3bb66': {'test_accuracy': 0.5761875,
'test_roc_auc': 0.5996632246632246,
'test_num_examples': 4000,
'test_loss': 0.6766078165060236}}],
'latest_global_model_federated_loss': 0.6766077876091003}
Plot the metrics¶
training_session_logit.metrics().plot()
Example output:
Retrieve the trained model¶
# Example of retrieving p-values
pv = model_logit.p_values()
pv
#Example p-value output:
x0 112.350396
x3 82.436540
x10 0.999893
x11 27.525280
dtype: float64
The LinearInferenceModel
object can be retrieved using the model’s as_pytorch
method. The relevant information, such as p-values
, can be accessed directly from the model object.
model_logit = training_session_logit.model().as_pytorch()
Retrieve the p-values¶
The .p_values()
function returns the p-values of the chunked predictors.
Summary information¶
The .summary
method fetches the coefficient, standard error, and p-value of the model corresponding to the specified predictor.
#Example of fetching summary
summary_x0 = model_logit.summary("x0")
summary_x0`
Example summary output:
Making predictions from a linear inference session¶
from torch.utils.data import DataLoader
from integrate_ai_sdk.packages.LinearInference.dataset import ChunkedTabularDataset
ds = ChunkedTabularDataset(path=f"{data_path}/test.parquet", **data_config_logit)
dl = DataLoader(ds, batch_size=len(ds), shuffle=False)
x, _ = next(iter(dl))
y_pred = model_logit(x)
y_pred
You can also make predictions with the resulting bundle of models when the data is loaded by the ChunkedTabularDataset
from the iai_linear_inference
package. The predictions will be of shape (n_samples, n_chunked_predictors)
where each column corresponds to one model from the bundle.
#Example prediction output:
tensor([[0.3801, 0.3548, 0.4598, 0.4809],
[0.4787, 0.3761, 0.4392, 0.3579],
[0.5151, 0.3497, 0.4837, 0.5054],
...,
[0.7062, 0.6533, 0.6516, 0.6717],
[0.3114, 0.3322, 0.4257, 0.4461],
[0.4358, 0.4912, 0.4897, 0.5110]], dtype=torch.float64)